Equivalence between the Boundary Harnack Principle and the Carleson Estimate
نویسنده
چکیده
Both the boundary Harnack principle and the Carleson estimate describe the boundary behavior of positive harmonic functions vanishing on a portion of the boundary. These notions are inextricably related and have been obtained simultaneously for domains with specific geometrical conditions. The main aim of this paper is to show that the boundary Harnack principle and the Carleson estimate are equivalent for arbitrary domains.
منابع مشابه
Boundary Harnack Principle for Δ+δ
For d ≥ 1 and α ∈ (0, 2), consider the family of pseudo differential operators {∆ + b∆α/2; b ∈ [0, 1]} on Rd that evolves continuously from ∆ to ∆ + ∆α/2. In this paper, we establish a uniform boundary Harnack principle (BHP) with explicit boundary decay rate for nonnegative functions which are harmonic with respect to ∆ + b∆α/2 (or equivalently, the sum of a Brownian motion and an independent ...
متن کاملBoundary Harnack principle for ∆+∆α/2
For d ≥ 1 and α ∈ (0, 2), consider the family of pseudo differential operators {∆+b∆; b ∈ [0, 1]} on R that evolves continuously from ∆ to ∆ + ∆. In this paper, we establish a uniform boundary Harnack principle (BHP) with explicit boundary decay rate for nonnegative functions which are harmonic with respect to ∆+b∆ (or equivalently, the sum of a Brownian motion and an independent symmetric α-st...
متن کاملA ug 2 00 9 Boundary Harnack principle for ∆ + ∆
For d ≥ 1 and α ∈ (0, 2), consider the family of pseudo differential operators {∆+b∆α/2; b ∈ [0, 1]} on R that evolves continuously from ∆ to ∆ + ∆. In this paper, we establish a uniform boundary Harnack principle (BHP) with explicit boundary decay rate for nonnegative functions which are harmonic with respect to ∆+b∆ (or equivalently, the sum of a Brownian motion and an independent symmetric α...
متن کاملOn the boundary behaviour of solutions to parabolic equations of p−Laplacian type
We describe some recent results on the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p-Laplacian. More precisely we focus on Carleson-type estimates and boundary Harnack principles.
متن کاملA boundary Harnack principle in twisted Hölder domains
The boundary Harnack principle for the ratio of positive harmonic functions is shown to hold in twisted Hölder domains of order α for α ∈ (1/2, 1]. For each α ∈ (0, 1/2), there exists a twisted Hölder domain of order α for which the boundary Harnack principle fails. Extensions are given to L-harmonic functions for uniformly elliptic operators L in divergence form. Short title: Boundary Harnack ...
متن کامل